

Requirements for the Next Generation Access Grid

Futures Laboratory
Argonne National Laboratory

The Access Grid

- Group to Group Collaboration
- Make computing, data, and knowledge resources widely available
- Spaces Designed to enable a shared sense of presence.
- Provide enough "Sense Data" from each site to make the interactions compelling enough to make users want to work in the shared spaces, not in their offices.
- Provide intuitive means to navigate the virtual space, find resources and people, work together to accomplish a common goal.

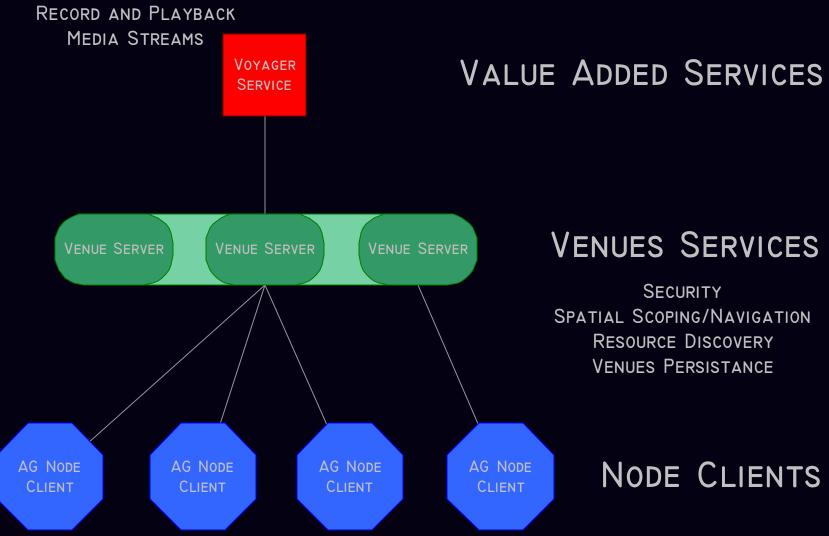
What We've Done

- LabSpace ANL/NEU MOO based scientific collaboration
 - tkSchmooze 1994 Audio / Video Tools launched from MOO
 - Metro Navigation, Resource Discovery, Resource Brokering
- Waterfall Glen 1994 MCS Division MUD
- Collaborative VR
 - CAVE to CAVE, CAVE to Desktop
 - ManyWorlds Shared VR, MOO Based Spatial Database, Persistent Objects
- DOE2000 ANL, LBL, PNNL, ORNL
- Tiled Displays More pixels for bigger displays

Early Goals

- Leverage the spatial metaphor, it's a strong psycho-perceptual tool.
- Remote Groups Should be able to effectively work together
- Scenarios we thought should work include:
 - Site Visits/Demos Subset ⇔ Many
 - Lectures One ⇔ Many
 - Caucus Subsets ⇔ Subsets
 - Discussions All ⇔ All

* Critical Criteria : A Subset is <u>not</u> a set of co-located people.


Where we are today

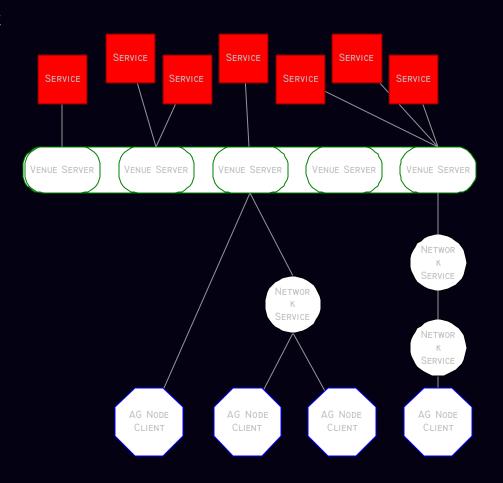
- Approximately 50 installed nodes
- Events happen daily
- Large Demos/Site Visits are routine
- Distributed research groups have progress meetings
- Project PI's have status meetings
- Tutorials occur approximately quarterly, but are getting more common
- Large distributed collaborations are underway
- Types of Interactions that work
 - Ad-Hoc meetings
 - Lectures
 - Panels
 - Question and Answer
- Wide Area Multicast is progressing

Today's Architectural details

Today's Minimum Node Requirements

- 4 NTSC Video Streams, transmitting at least 25 FPS.
- Decode and Display 40 256Kbps Video Streams
- 1 16KHz / 16 Bit Audio Stream
- 1 Connection to the Venues MUD
- 1 3x XGA Projection Screen
- 1 Control Workstation
- 100Mb local network connection
- at least 20Mb wide area connection
- Native Multicast working

Laundry List of Lessons Learned


- Hyperspace is not space: It's hard to leverage the innate knowledge of space
 - The world is not a desktop
 - People don't understand the technology unless they see it
- Changing workflow is not a technical problem
 - Agenda's keep meetings moving
- Technology needs to support human interactions, not interfere
 - E.g. Oprah Mics work, but are less than ideal for real interaction
 - Interaction Latency
 - Modality switching
 - Native Multicast is hard to make work both politically and technically
 - More technical advances are needed, standards, interoperability, and vendor support
 - More demand needed to influence service providers
 - More motivation for institutions to support it

A Glimpse of the Future

This is a hybrid peer to peer and client server model.

- Application Servers
 - Provide High Level Value Added Services
 - ANL's Voyager is an example
- Venues Servers
 - Distributed
 - Peer to Peer Service
 - Spatial Scoping of Resources
 - Provide Applications Services
- Networking Services
 - Stream Processing
 - Stream Transcoding
 - Stream Multiplexing
 - Stream QoS
- Node Clients

Requirements

- Increase the perception of presence.
 - Lower Latency
 - Higher Bandwidth
 - Capture and Rendering
 - More Environmental Transfer
 - Better Audio
 - Spatialized, Multiple Sources
 - Better Video
 - Higher Resolution, Better Codecs, Better Color Control, Better Lighting
 - 3D Expansion for Audio and Video
- Make it Easier to Use
 - Better User Interfaces
 - Better Control Structures
 - Scheduling needs to be addressed
 - Co-scheduling people, nodes, computing resources, etc
 - Perhaps including agenda management
- Device Integration Roadmap
 - Specialized Devices
 - Grid Resources for Computing and Data

More Requirements

- Application Server Infrastructure
 - Shared Communication Channels for Data, Control and View
 - Application Finding (MDS, UDDI, SLP, Salutation)
- Networking Service Infrastructure
 - Collaboration Based Dynamic Topologies
 - Network Resource Reservation / Negotiating QoS
- General Needs
 - Application and Data Caching?
 - Comprehensive Security Model
 - Integrates with local security domains
 - Global Sign-on
 - Provides ease of use, should not be a barrier to utilization

Node Technology

- Smaller/Portable Nodes Scientific Labs, Wilderness Expedition, Homes
- Lecture Nodes Webcasting
- Team Nodes small groups of people operating the nodes simultaneously, like a Control Room.
- Node Improvements
 - Local Administrative Domain ← → Access Grid Distributed Integration
 - Dockable Workspaces Users can interact with the node from laptops, handhelds, pdas, etc
 - More Asynchrony Digest Type Interactions

Broader Use Scenarios

Scientific Experiments

 Data Security, Access Controls, Device Interfaces, Higher Bandwidths, Global Scheduling, Library/Literature interactions, Shared analysis tools, semisynchronous

Explorations in Nature

 Low Bandwidth, "Digest Interactions", very asynchronous interactions with others, Remote Analysis, Expedition Planning & Changes

• Classrooms & Learning

Satellite participants, Low latency interaction, Peer-to-Peer communication,
 Document Sharing, Application Broadcasting, Internationalization

• Remote Medical Use

 Extremely Low Latency, High Bandwidth, "Digest Notebooks", Device Integration, Remote Experts (find, contact, show data, ask opinion)

Technical Research Problems

- New Codecs emerging, integration takes time
- Better Processing, it's hard to stay ahead of the tech semi
- Networks Lagging Behind...For Now, we need more bandwidth (20Mbs now, 80Mbs if we had it)
- Digital Video Capture is lagging, Tiled Cameras? For higher resolutions?
- Digital Projection is lagging, Tiled Displays are still the only way to get very large displays.
- Stereo Acoustic Echo Cancellation
- Sound Virtualization incorporating echo cancellation